Некоторые классы обратных задач для уравнений смешанного типа второго порядка <br>Some classes of inverse problems for mixed type equations of second order

Loading...

QR-код документа

Как сканировать QR-код?

Для пользователей Android:
  1. Скачайте приложение для сканирования QR-кодов (Google Play)
  2. Откройте скачанное приложение;
  3. Наведите камеру на QR-код.
Для пользователей iPhone:
  1. Откройте приложение "Камера";
  2. Наведите камеру на QR-код;
  3. Нажмите на всплывающее уведомление.
Обложка электронного документа Некоторые классы обратных задач для уравнений смешанного типа второго порядка <br>Some classes of inverse problems for mixed type equations of second order

Некоторые классы обратных задач для уравнений смешанного типа второго порядка Some classes of inverse problems for mixed type equations of second order

Доступ
Открытый
DOI
10.25587/SVFU.2018.100.20550
Аннотация
Рассматривается вопрос о корректности в пространствах Соболева обратной задачи определения функции источника для уравнения смешанного типа второго порядка. В качестве условий переопределения рассматриваются значения решения на некотором наборе плоскостей размерности n−1. Неизвестные функции, входящие в правую часть, зависят от времени и n − 1 пространственных переменных и ищутся в классе квадратично суммируемых функций. При определенных естественных условиях на данные получены теоремы существования и единственности обобщенных решений задачи. Условия на данные по существу совпадают с условиями разрешимости прямой задачи. В качестве метода используется метод продолжения по параметру и полученные априорные оценки. Метод исследования позволяет обобщить результаты на случай более гладких данных и регулярных решений. In the Sobolev spaces, we consider the well-posedness questions for the inverse problem of recovering the source function of a mixed type equation of second order. The overdetermination conditions are the values of a solution on a collection of planes of dimension n − 1. The unknowns occurring in the right-hand side depend on time and n − 1 unknown space variables. Under certain natural conditions on the data of the problem, we obtain existence and uniqueness theorems for generalized solutions to this problem. The conditions on the data almost coincide with those ensuring solvability of the direct problem. The parameter continuation method and a priori estimates are used to validate the results. The method allows us to generalize the results to the case of smoother data and regular solutions.
  • Библиографическая запись

Джамалов, С. З. Некоторые классы обратных задач для уравнений смешанного типа второго порядка / С. З. Джамалов, С. Г. Пятков // Математические заметки СВФУ. — 2018. — Т. 25, N 4 (100), октябрь-декабрь. — С. 3-14.

Другие выпуски

Номера года:

    Вам будет интересно