Об обращении бесконечных гауссовых матриц <br>Invertion of infinite gaussian matrices
Вернуться к старой версии сайта https://old.nlrs.ru/

Loading...

QR-код документа

Как сканировать QR-код?

Для пользователей Android:
  1. Скачайте приложение для сканирования QR-кодов (Google Play)
  2. Откройте скачанное приложение;
  3. Наведите камеру на QR-код.
Для пользователей iPhone:
  1. Откройте приложение "Камера";
  2. Наведите камеру на QR-код;
  3. Нажмите на всплывающее уведомление.
Обложка электронного документа Об обращении бесконечных гауссовых матриц <br>Invertion of infinite gaussian matrices

Об обращении бесконечных гауссовых матриц Invertion of infinite gaussian matrices

Доступ
Открытый
DOI
10/25587/SVFU.2018.99.16951
Аннотация
Исследовано существование левосторонних, правосторонних и двусторонних обратных матриц для так называемых гауссовых бесконечных матриц, т. е. для верхних бесконечных треугольных матриц с отличными от нуля элементами на главной диагонали. Доказано существование единственной двусторонней обратной матрицы для гауссовых матриц. Найдено явное выражение обратной матрицы для гауссовой матрицы любого порядка, в частности, и для бесконечного случая. Данное выражение удобно для его реализации на ПК, поскольку вычисления основаны на рекуррентных соотношениях. Такой подход можно распространить и для так называемых треугольных бесконечных матриц, т. е. для нижних бесконечных треугольных матриц с отличными от нуля элементами на главной диагонали. Таким образом, появляется возможность обращения бесконечной матрицы с бесконечным рангом, поскольку такие матрицы разлагаются на произведение двух матриц: треугольной и гауссовой матриц. We study existence of the left inverse, right inverse and inverse of Gaussian infinite matrices (those are the upper infinite triangular matrices with nonzero elements on the main diagonal). The existence of a unique inverse of the Gaussian matrix is proved. Also, an explicit expression for the inverse of the Gaussian matrix of any order is found, including the infinite case. Implementation of this expression is very convenient, since calculations are based on recurrence relations. Such approach can be extended to triangular infinite matrices (those are the lower infinite triangular matrices with nonzero elements on the main diagonal). Thus, there is the possibility of inversion of an infinite matrix of infinite rank, since such matrices decompose into the product of two matrices, a triangular and a Gaussian.
  • Библиографическая запись

Об обращении бесконечных гауссовых матриц / Ф. М. Федоров. Н. Н. Павлов, С. В. Потапова, О. Ф. Иванова // Математические заметки СВФУ. — 2018. — Т. 25, N 3 (99), июль-сентябрь. — С. 54-67.

Другие выпуски

Номера года:

    Вам будет интересно