Method of Riesz potentials applied to solution to nonhomogeneous singular wave equations
Вернуться к старой версии сайта https://old.nlrs.ru/

Loading...

QR-код документа

Как сканировать QR-код?

Для пользователей Android:
  1. Скачайте приложение для сканирования QR-кодов (Google Play)
  2. Откройте скачанное приложение;
  3. Наведите камеру на QR-код.
Для пользователей iPhone:
  1. Откройте приложение "Камера";
  2. Наведите камеру на QR-код;
  3. Нажмите на всплывающее уведомление.
Обложка электронного документа Method of Riesz potentials applied to solution to nonhomogeneous singular wave equations

Method of Riesz potentials applied to solution to nonhomogeneous singular wave equations

Доступ
Открытый
DOI
10.25587/SVFU.2018.99.16952
Аннотация
Riesz potentials are convolution operators with fractional powers of some distance (Euclidean, Lorentz or other) to a point. From application point of view, such potentials are tools for solving differential equations of mathematical physics and inverse problems. For example, Marsel Riesz used these operators for writing the solution to the Cauchy problem for the wave equation and theory of the Radon transform is based on Riesz potentials. In this article, we use the Riesz potentials constructed with the help of generalized convolution for solution to the wave equations with Bessel operators. First, we describe general method of Riesz potentials, give basic definitions, introduce solvable equations and write suitable potentials (Riesz hyperbolic B-potentials). Then, we show that these potentials are absolutely convergent integrals for some functions and for some values of the parameter representing fractional powers of the Lorentz distance. Next we show the connection of the Riesz hyperbolic B-potentials with d’Alembert operators in which the Bessel operators are used in place of the second derivatives. Next we continue analytically considered potentials to the required parameter values that includes zero and show that when value of the parameter is zero these operators are identity operators. Finally, we solve singular initial value hyperbolic problems and give examples.
  • Библиографическая запись

Shishkina, E. L. Method of Riesz potentials applied to solution to nonhomogeneous singular wave equations / E. L. Shishkina, S. Abbas // Математические заметки СВФУ. — 2018. — Т. 25, N 3 (99), июль-сентябрь. — С. 68-91.

Другие выпуски

Номера года:

    Вам будет интересно