Задача оптимального управления длиной поперечной трещины в модели равновесия двумерного тела с двумя пересекающимися трещинами <br>Optimal control of the length of a straight crack for a model describing an equilibrium of a two-dimensional body with two intersecting cracks
Вернуться к старой версии сайта https://old.nlrs.ru/

Loading...

QR-код документа

Как сканировать QR-код?

Для пользователей Android:
  1. Скачайте приложение для сканирования QR-кодов (Google Play)
  2. Откройте скачанное приложение;
  3. Наведите камеру на QR-код.
Для пользователей iPhone:
  1. Откройте приложение "Камера";
  2. Наведите камеру на QR-код;
  3. Нажмите на всплывающее уведомление.
Обложка электронного документа Задача оптимального управления длиной поперечной трещины в модели равновесия двумерного тела с двумя пересекающимися трещинами <br>Optimal control of the length of a straight crack for a model describing an equilibrium of a two-dimensional body with two intersecting cracks

Задача оптимального управления длиной поперечной трещины в модели равновесия двумерного тела с двумя пересекающимися трещинами Optimal control of the length of a straight crack for a model describing an equilibrium of a two-dimensional body with two intersecting cracks

Доступ
Открытый
DOI
10.25587/SVFU.2018.99.16950
Аннотация
Изучена математическая модель равновесия двумерного упругого тела с двумя взаимно пересекающимися трещинами. Одна из трещин предполагается прямолинейной, а вторая — криволинейной. На обеих кривых, задающих трещины, ставятся условия непроникания в виде неравенств. Проводится анализ зависимости решений семейства вариационных задач от параметра, характеризующего вариацию длины прямолинейной трещины. Доказано существование решения задачи оптимального управления. Для этой задачи функционал качества определен с помощью функционала Гриффитса, характеризующего возможность развития трещины вдоль заданной кривой. Параметр управления задает изменение длины прямолинейной трещины. A mathematical model describing an equilibrium of cracked two-dimensional bodies with two mutually intersecting cracks is considered. One of these cracks is assumed to be straight, and the second one is described with the use of a smooth curve. Inequality type boundary conditions are imposed at the both cracks faces providing mutual non-penetration between crack faces. On the external boundary, homogeneous Dirichlet boundary conditions are imposed. We study a family of corresponding varia-tional problems which depends on the parameter describing the length of the straight crack and analyze the dependence of solutions on this parameter. Existence of the solution to the optimal control problem is proved. For this problem, the cost functional is defined by a Griffith-type functional, which characterizes a possibility of curvilinear crack propagation along the prescribed path. Meanwhile, the length parameter of the straight crack is chosen as a control parameter.
  • Библиографическая запись

Лазарев, Н. П. Задача оптимального управления длиной поперечной трещины в модели равновесия двумерного тела с двумя пересекающимися трещинами / Н. П. Лазарев, Е. М. Рудой, Т. С. Попова // Математические заметки СВФУ. — 2018. — Т. 25, N 3 (99), июль-сентябрь. — С. 43-53.

Другие выпуски

Номера года:

    Вам будет интересно