О первой смешанной задаче в банаховых пространствах для вырождающихся уравнений с меняющимся направлением времени <br>On the first mixed problem in banach spaces for degenerate parabolic equations with changing time direction
Вернуться к старой версии сайта https://old.nlrs.ru/

Loading...

QR-код документа

Как сканировать QR-код?

Для пользователей Android:
  1. Скачайте приложение для сканирования QR-кодов (Google Play)
  2. Откройте скачанное приложение;
  3. Наведите камеру на QR-код.
Для пользователей iPhone:
  1. Откройте приложение "Камера";
  2. Наведите камеру на QR-код;
  3. Нажмите на всплывающее уведомление.
Обложка электронного документа О первой смешанной задаче в банаховых пространствах для вырождающихся уравнений с меняющимся направлением времени <br>On the first mixed problem in banach spaces for degenerate parabolic equations with changing time direction

О первой смешанной задаче в банаховых пространствах для вырождающихся уравнений с меняющимся направлением времени On the first mixed problem in banach spaces for degenerate parabolic equations with changing time direction

Доступ
Открытый
DOI
10.25587/SVFU.2018.100.20553
Аннотация
Работа посвящена изучению одного из разделов неклассических дифференциальных уравнений, а именно вопросов разрешимости для параболических уравнений с меняющимся направлением времени второго порядка. Известно, что в обычных краевых задачах для строго параболических уравнений гладкость начальных и граничных условий полностью обеспечивает принадлежность решений пространствам Гельдера, но в случае уравнений с меняющимся направлением времени гладкость начальных и граничных условий далеко не дает принадлежность решений этим пространствам. С.А. Терсеновым (для модельного параболического уравнения с меняющимся направлением времени) и С.Г. Пятковым (для более общего уравнения второго порядка) получены необходимые и достаточные условия разрешимости в Гельдеровых пространствах соответствующих смешанных задач. При этом начальные и краевые условия всегда предполагались нулевыми. Рассмотрены случаи, когда начальные и граничные условия принадлежат банаховым пространствам. Введены функциональные пространства, в которых надо искать решения. Получены соответствующие априорные оценки, позволяющие получать условия разрешимости указанных задач. Изучены свойства полученных решений. В частности, установлена эквивалентность условий Рисса и Литлвуда-Пэли, аналогичных условиям для решений строго эллиптических и строго параболических уравнений второго порядка. Доказана однозначная разрешимость первой смешанной задачи с граничными и начальными функциями из банахового пространства. The article is devoted to studying one of the sections of nonclassical differential equations, namely, matters concerned with solvability of parabolic equations with changing second-order time direction. As is known, in ordinary boundary-value problems for strictly parabolic equations, the smoothness of the initial and boundary conditions completely ensures that the solutions belong to the Holder spaces, but in the case of equations with changing time direction, the smoothness of the initial and boundary conditions does not ensure that the solutions belong to these spaces. S.A. Tersenov (for a model parabolic equation with changing time direction) and S.G. Pyatkov (for a more general second-order equation) obtained the necessary and sufficient conditions for solvability of the corresponding mixed problems in Holder spaces. In so doing, they always assumed the initial and boundary conditions being equal to zero. Cases in which the initial and boundary conditions belong to Banach spaces are considered. The functional spaces in which the solutions must be sought are introduced. Relevant a priori estimates, which make it possible to obtain the solvability conditions for these problems, are obtained. The properties of the obtained solutions have been studied. In particular, the equivalence of the Riesz and Littlewood-Paley conditions similar to the conditions for solutions of strictly elliptic and strictly parabolic second order equations is established. A unique solvability of the first mixed problem with boundary and initial functions from the Banach space has been proved.
  • Библиографическая запись

Петрушко, И. М. О первой смешанной задаче в банаховых пространствах для вырождающихся уравнений с меняющимся направлением времени / И. М. Петрушко, М. И. Петрушко // Математические заметки СВФУ. — 2018. — Т. 25, N 4 (100), октябрь-декабрь. — С. 45-59.

Другие выпуски

Номера года:

    Вам будет интересно