В настоящее время интенсивно развивается применение электронных микроскопов в медицине, в том числе сканирующих электронных микроскопов (СЭМ), разработанных для решения огромного количества проблем в различных областях с широким диапазоном ускоряющих электроны напряжений, энергии электронных пучков. Разработка СЭМ с определёнными эмиссионными характеристиками, с диапазоном более низких энергий пучков для исследования биообразцов является актуальной задачей, т. к. модификация СЭМ для решения задач, например, в медицине, позволило бы получать более качественные изображения биообразцов в диагностике и наблюдении эффективности терапии. Для разработки новых СЭМ с определёнными характеристиками предлагается проведение менее затратных исследований с помощью численных методов на основе математических моделей процессов в электронно-оптических системах СЭМ. В связи с этим в данной работе ставится задача определения размера и формы пучка, основных эмиссионных характеристик полевого электронного катода (ПЭК) СЭМ, находящегося под воздействием возбуждающего электронную эмиссию электрического поля и внешнего продольного магнитного поля путем исследования движения крайнего электрона пучка с учетом влияния пространственного заряда электронов пучка, внешнего магнитного поля. В модели ПЭК аппроксимируется параболоидом вращения, вводится понятие граничного "крайнего" электрона, траекторией которого определяются форма и размер пучка. Задача расчета эмиссионных характеристик вдоль траектории крайнего электрона ПЭК решается с помощью математической модели, включающей следующие уравнения: движения "крайнего" электрона, Максвелла вне и внутри пучка, непрерывности плотности тока, уравнения Фаулера-Нордгейма. В итоге получена система из 18 обыкновенных дифференциальных уравнений первого порядка, численный расчет которых с помощью метода Рунге-Кутта 4 порядка позволяет получить эмиссионные характеристики ПЭК. В результате предполагается целесообразность модификации СЭМ для более эффективного применения в области медицины с учетом все более широкого применения их в диагностике заболеваний и возможного улучшения качества изображений за счет разработки ПЭК СЭМ с более подходящими характеристиками.
Currently, the use of electron microscopes in medicine is developing intensively, including scanning electron microscopes (SEM), which are designed to solve a huge number of problems in various fields with a wide range of electron accelerating voltages and electron beam energies. The development of an SEM with certain emission characteristics, with a range of lower beam energies for the study of biological samples, is an urgent task because modifying the SEM to solve problems in medicine, for example, would make it possible to obtain higher-quality images of biospecimens for diagnostics and monitoring the effectiveness of therapy. To develop new SEMs with certain characteristics, it is proposed to conduct less expensive research using numerical methods based on mathematical models of processes in electron-optical SEM systems. In this regard, this work sets the task of determining the size and shape of the beam, the main emission characteristics of the field electron cathode (FEC) of the SEM, which is under the influence of the electric field that excites electron emission and the external longitudinal magnetic field by studying the movement of the outermost electron of the beam, taking into account the influence of space charge beam electrons, external magnetic field. In the model, the FEC is approximated by a paraboloid of rotation, and the concept of a boundary “outermost” electron is introduced, the trajectory of which determines the shape and size of the beam. The problem of calculating the emission characteristics along the trajectory of the outermost electron of a FEC is solved using a mathematical model that includes the following equations: motion of the "outermost" electron, Maxwell outside and inside the beam, continuity of the current density, Fowler-Nordheim equation. As a result, a system of 18 first-order ordinary differential equations was obtained, the numerical calculation of which using the 4th order Runge-Kutta method allows us to obtain the emission characteristics of the FEC. As a result, it is suggested that it would be feasible to modify SEMs for more effective use in the medical field, taking into account their increasing use in disease diagnosis and the possible improvement of image quality through the development of FEC SEMs with more suitable characteristics.